Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors.
نویسندگان
چکیده
Glutamate receptors are associated with various regulatory and cytoskeletal proteins. However, an understanding of the functional significance of these interactions is still rudimentary. Studies in hippocampal neurons suggest that such interactions may be involved in calcium-induced reduction in the open probability of NMDA receptors (inactivation). Thus we examined the role of the intracellular domains of the NR1 subunit and two of its binding partners, calmodulin and alpha-actinin, on this process using NR1/NR2A heteromers expressed in human embryonic kidney (HEK) 293 cells. The presence of the first 30 residues of the intracellular C terminus of NR1 (C0 domain) was required for inactivation. Mutations in the last five residues of C0 reduced inactivation and produced parallel shifts in binding of alpha-actinin and Ca2+/calmodulin to the respective C0-derived peptides. Although calmodulin reduced channel activity in excised patches, calmodulin inhibitors did not block inactivation in whole-cell recording, suggesting that inactivation in the intact cell is more complex than binding of calmodulin to C0. Overexpression of putative Ca2+-insensitive, but not Ca2+-sensitive, forms of alpha-actinin reduced inactivation, an effect that was overcome by inclusion of calmodulin in the whole-cell pipette. The C0 domain also directly affects channel gating because NR1 subunits with truncated C0 domains that lacked calmodulin or alpha-actinin binding sites had a low open probability. We propose that inactivation can occur after C0 dissociates from alpha-actinin by two distinct but converging calcium-dependent processes: competitive displacement of alpha-actinin by calmodulin and reduction in the affinity of alpha-actinin for C0 after binding of calcium to alpha-actinin.
منابع مشابه
Ca2+/CaM controls Ca2+-dependent inactivation of NMDA receptors by dimerizing the NR1 C termini.
Ca2+ influx through NMDA receptors (NMDARs) leads to channel inactivation, which limits Ca2+ entry and protects against excitotoxicity. Extensive functional data suggests that this Ca2+-dependent inactivation (CDI) requires both calmodulin (CaM) binding to the C0 cassette of the NR1 subunit's C terminus (CT) and regulation by alpha-actinin-2, but a molecular understanding of CDI has been elusiv...
متن کاملInactivation of NMDA Receptors by Direct Interaction of Calmodulin with the NR1 Subunit
NMDA (N-methyl-D-aspartate) receptors are excitatory neurotransmitter receptors in the brain critical for synaptic plasticity and neuronal development. These receptors are Ca2+-permeable glutamate-gated ion channels whose physiological properties are regulated by intracellular Ca2+. We report here the purification of a 20 kDa protein identified as calmodulin that interacts with the NR1 subunit ...
متن کاملCalmodulin Mediates Calcium-Dependent Inactivation of N-Methyl-D-Aspartate Receptors
Ca2+ influx through N-methyl-D-aspartate (NMDA) receptors activates signal transduction pathways critical for many forms of synaptic plasticity in the brain. NMDA receptor-mediated Ca2+ influx also downregulates the gating of NMDA channels through a process called Ca2+-dependent inactivation (CDI). Recent studies have demonstrated that the calcium binding protein calmodulin directly interacts w...
متن کاملIntracellular domains of NR2 alter calcium-dependent inactivation of N-methyl-D-aspartate receptors.
At central excitatory synapses, the transient elevation of intracellular calcium reduces N-methyl-D-aspartate (NMDA) receptor activity. Such 'calcium-dependent inactivation' is mediated by interactions of calcium/calmodulin and alpha-actinin with the C terminus of NMDA receptor 1 (NR1) subunit. However, inactivation is also NR2-subunit specific, because it occurs in NR2A- but not NR2C-containin...
متن کاملBrain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin.
The N-methyl-D-aspartate receptor (NMDA-R) and brain spectrin, a protein that links membrane proteins to the actin cytoskeleton, are major components of post-synaptic densities (PSDs). Since the activity of the NMDA-R channel is dependent on the integrity of actin and leads to calpain-mediated spectrin breakdown, we have investigated whether the actin-binding spectrin may interact directly with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 4 شماره
صفحات -
تاریخ انتشار 1999